博客
关于我
C++折半查找的实现
阅读量:745 次
发布时间:2019-03-22

本文共 2235 字,大约阅读时间需要 7 分钟。

C++折半查找法的实现与理解

折半查找法,也称二分查找,是一种高效的查找算法,特别适用于已排序的数组。它通过不断缩小查找范围来快速定位目标元素。以下是关于折半查找法的详细实现和理解。

Fold-Halving Search in C++: Implementation and Explanation

Fold-halving, or binary search, is an efficient searching algorithm primarily used for sorted arrays. By repeatedly dividing the search interval in half, this method allows for rapid location of a target element. Below is the detailed implementation and explanation of fold-halving in C++.

Sorting: The Initial Step

Before performing fold-halving, the array must be sorted. The given array is sorted to facilitate the fold-halving process:

arr = {1,2,3,4,5,6,7,8,9,10,11}

Key Steps in Fold-Halving

  • Initialization:

    • Define low as the initial smallest index (0).
    • Define high as the initial largest index (10).
    • Calculate mid, the middle index of the array.
  • Loop Until mid is Within Bounds:

    • While low is less than or equal to high.
    • Compute mid as the average of low and high, using integer division for exact mid-point calculation.
    • Compare the target key with the element at mid.
  • Comparison and Range Adjustment:

    • If key equals arr[mid], return mid as the target's position.
    • If key is greater than arr[mid], set low to mid + 1 and adjust the search interval to [mid + 1, high].
    • If key is less than arr[mid], set high to mid - 1 and adjust the search interval to [low, mid - 1].
  • Example: Finding Target Element 7

  • Initial Setup:

    • low = 0, high = 10, mid = 5.
    • Target key = 7.
  • First Comparison:

    • arr[5] is 7. Return mid = 5.
  • Handling Edge Cases

    • Empty Array: Handle array size checks to avoid invalid operations.
    • Single Element Array: Directly compare the single element with the key.
    • Multiple Occurrences of Key: If the key is present multiple times, ensure the loop continues until all possible locations are exhausted.

    Cost of Fold-Halving

    The time complexity of fold-halving is O(log n), making it significantly more efficient than linear search for large arrays. The space complexity is O(1) as no additional data structures are used.

    Conclusion

    Fold-halving is an essential algorithm for efficient array searching. By leveraging sorted data and dividing the search space, this method quickly pinpoints the target element, demonstrating its efficiency and reliability in various applications.

    转载地址:http://tnxwk.baihongyu.com/

    你可能感兴趣的文章
    NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_生成插入Sql语句_实际操作02---大数据之Nifi工作笔记0041
    查看>>
    NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
    查看>>
    NIFI从MySql中离线读取数据再导入到MySql中_不带分页处理_01_QueryDatabaseTable获取数据_原0036---大数据之Nifi工作笔记0064
    查看>>
    NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
    查看>>
    NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
    查看>>
    nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
    查看>>
    NIFI分页获取Mysql数据_导入到Hbase中_并可通过phoenix客户端查询_含金量很高的一篇_搞了好久_实际操作05---大数据之Nifi工作笔记0045
    查看>>
    NIFI分页获取Postgresql数据到Hbase中_实际操作---大数据之Nifi工作笔记0049
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>
    NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
    查看>>
    NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_处理器介绍_处理过程说明---大数据之Nifi工作笔记0019
    查看>>
    NIFI大数据进阶_Json内容转换为Hive支持的文本格式_操作方法说明_01_EvaluteJsonPath处理器---大数据之Nifi工作笔记0031
    查看>>
    NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka消费者处理器_来消费kafka数据---大数据之Nifi工作笔记0037
    查看>>
    NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka生产者---大数据之Nifi工作笔记0036
    查看>>
    NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
    查看>>
    NIFI大数据进阶_NIFI监控功能实际操作_Summary查看系统和处理器运行情况_viewDataProvenance查看_---大数据之Nifi工作笔记0026
    查看>>
    NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
    查看>>
    NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
    查看>>
    NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
    查看>>